一元二次方程式求解
$(ax^{2}+bx+c=0)$
二邊除a : $(x^{2}+\frac{bx}{a}+\frac{c}{a}=0)$
$(\therefore x^{2}+\frac{bx}{a}=-\frac{c}{a})$
二邊加上$((\frac{b}{2a})^{2})$ => $(x^{2}+\frac{bx}{a}+(\frac{b}{2a})^{2}=-\frac{c}{a}+(\frac{b}{2a})^{2})$
$(\therefore (x+\frac{b}{2a})^{2}=\frac{b^{2}-4ac}{4a^{2}})$
$(x=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a})$